
A Bare Minimal Computer for Everyone
L. Chaloyard, F. de Dinechin, M.P. Escudié, L. Morel

lucas.chaloyard@insa-lyon.fr

CitiLab - Phénix

INSA Lyon

Undone Computer Science
February 7, 2024

1 / 29

mailto:lucas.chaloyard@insa-lyon.fr

Presentation layout

1 Social setting in which we consider our work:
Planetary limits, social foundations and the doughnut economics

2 Properties that this setting puts on digital systems:
Resiliency and conviviality

3 Our current object of study:
Tiny operating system and its kind of "minimal" programming
language

4 Our desired properties and a couple of research directions:
Rethink the shape of our tools and their usage

2 / 29

Context: Doughnut economics (1)

Credits: Kate Raworth - A Safe and Just space for Humanity (2012)
3 / 29

Context: Doughnut economics (2)

Six boundaries
assessed and
crossed

Can we make digital
tools fitting below
the ecological
ceiling ?

Credits: Wang-Erlandsson et al. (2022) Stockholm Resilience Center

4 / 29

Context: Doughnut economics (2)

No life essentials that
is fully accessible
(data from 2011*)

Can we make digital
tools fitting below the
ecological ceiling and
used to achieve the
social foundations
?

Credits: O’Neill, L. Fanning, F.Lamb, K. Steinberger (2018) - A good life for all
within planetary boundaries

4 / 29

Context: Digital technologies
What about digital technologies ?

Became a radical monopoly
Used as an accelerator to a lot of human activities
Has good and bad applications that needs to be discussed

Social foundation Ecological ceiling

Wikipedia?

Text editing?

Programming?Cambridge analytica?

Predictive policing?

Attention economy?

Autonomous vehicles?

Video on-demand?

Smart refrigerator?

Shortfall OvershootSafe and just space for humanity

How could we build a personal computer fitting in the doughnut ?

5 / 29

Goal: A computer for everyone fitting in the doughnut

Complexity
Quantity of dependencies needed to make,
maintain and use the tool

Our approach :
(Co-)constructive : Build until we are
satisfied
▶ Reducing complexity by building from

a minimal
▶ Building for an ethical value
▶ But when are we satisfied ? (red dot)

bare minimal
computer for

everyone

Ecological Ceiling

approach
constructive

Hardware

text editing

wikipedia client

programming

=⇒ What use cases should our bare minimal tool be used for ?
=⇒ What should a bare minimal tool look like ?

6 / 29

Bare minimal computer for everyone
Two target values for the bare minimal computer for everyone : resiliency
and conviviality

Resiliency is the capacity of a socio-technical system to restore a
reasonable level of social foundations after a change
The convivial1 structure of a digital tool still has to be defined, but
according to Illich it has to protect three essentials values:
▶ Survival
▶ Justice : Equal possibilities and control for everyone over the tool

outputs
▶ Self-defined work : Similar amount of needed effort and equal control for

everyone over the tool usage

We will focus on resiliency, justice and self-defined work
1Ivan Illich - Tools for Conviviality (1973)

7 / 29

Resilient and convivial computer (1)

What about the hardware ?
Hypothesis: sustainable hardware might be possible
Goal: frame this sustainable hardware

Several hardware specifications have an impact on the shape of the tool:
64-bit? 32-bit? 16-bit? 8-bit?
RISC? CISC? VLIW? Dataflow?
1KB? 1MB? 1GB? 1TB?

Minimal computers: RPi 0, One Laptop per Child, “vintage” computers

We will frame the needed hardware with the software we wish to run

8 / 29

Resilient and convivial computer (2)

Which software bricks are we studying?
Programming languages
Compiler, interpreters and virtual machine
Operating systems “as en Extended Machine1”

Several “operating systems” seemed interesting:
Portable OSes: Thoth, InfernoOS, HelenOS, NetBSD
RTOSes: FreeRTOS, Contiki, TinyOS, Zephyr, Riot
Virtual Machines: Java/JVM, SectorLISP/LISP, DuskOS/FORTH

It has interesting properties for our definitions of resiliency and conviviality

1Andrew S. Tanenbaum - Modern Operating System 3rd edition (2007)
9 / 29

DuskOS: Case study (1)
We observed multiples interesting technical properties of DuskOS:

The entire system and its design could fit in one brain
=⇒ It can be entirely understood by its user

The portability effort seemed reasonable even for one person
=⇒ Allowing it to adapt to a change of hardware more easily

Once DuskOS is live, it is capable of being self-sufficient
=⇒ DuskOS will not be affected by a change of external softwares
and its user need nothing else to use it

We will look into how DuskOS brings the
understandability, portability and self-sufficiency properties

10 / 29

DuskOS kezako ?

DuskOS1 is
An “operating system” developed by Virgil Dupras
32-bit Forth environment
Running on ARM, i386 and include a POSIX C VM
Currently capable of running a FAT16 filesystem, a text editor, a
(sub-)C compiler, ...
Very small memory footprint, 180KB of RAM on a PC running in TUI
mode with a text editor and the C compiler loaded

Also it is the big brother of Collapse OS2

1https://sr.ht/~vdupras/duskos/
2http://collapseos.org/

11 / 29

https://sr.ht/~vdupras/duskos/
http://collapseos.org/

DuskOS: Case study (2)

Three DuskOS features contribute to the technical properties we identified:

FORTH: a portable and minimalist language

DuskOS HAL: a minimal assembler for a virtual stack machine

DuskOS replication: cross-assembling

12 / 29

FORTH: a portable and minimalist language
What is FORTH ?

(Family of) stack programming languages and an interactive
environment
Conceived by Charles H. Moore “released” 1968, for astronomical and
spatial apps
Capable of fitting a developing environment in a restrained memory
space

3 distinct characteristics :
No grammar, only names separated by spaces
Those names are "words" contained in a "dictionary"
Stack language : 2 3 + 4 * → 20

13 / 29

FORTH, take a look at the beast !
(stack-before-execution -- stack-after-execution)

[REPL]> 1 333 22 3max (-- 333)
[REPL]> 33 - (333 -- 300)
[REPL]> . (300 --)
[REPL]> ‘‘50’’

FORTH allows its user to define new “word” and so to extent the system,
using the “:” word, and definition is closed by “;”
: 3max (a b c -- max(a,b,c))

2dup > if drop else nip then (a b c -- a max(b,c))
2dup > if drop else nip then ; (a max(b,c) -- max(a,b,c))

That’s what we’ll call “compilation” in FORTH

How does it work ?

14 / 29

FORTH Core Engine and Dictionary
FORTH Core Engine is the part of software allowing to:

Add a new word to the dictionary (compilation, assembling)
Find and execute a word (interpretation)

A structure called dictionary (a linked list) keep tracks of FORTH words
available to the system

· · · · · ·
prev entry next entry

3 M A X link
ptr na

m
e

si
ze Binary code

body︷ ︸︸ ︷header︷ ︸︸ ︷
Execute a word = call to the first address of its body

=⇒ Core Engine mainly consists in manipulating the dictionary (a linked list)
=⇒ Making the core engine small, so understandable and portable

15 / 29

DuskOS: HAL (1)

The HAL (Harmonized Assembly Layer) is defined as :
a set of words implemented by all DuskOS kernels which have
the same semantics and compile native code that has consistent
results on all architectures.

There is two primary usage of this HAL in DuskOS
Assembling its own bootstrap code, allowing DuskOS to become a
usable system
Generate binary code in a cross-arch manner, making the (sub-)C
compiler fully arch-independent

16 / 29

DuskOS: HAL (2)
The HAL is an assembler for a kind of abstract (or virtual) stack-machine
implemented when porting DuskOS on a new arch.

That abstract machine can be described with the following info :
2 stacks : Parameter Stack (PS) and Return Stack (RS)
4 registers : W (Top of stack), A, PSP, RSP.
3 kinds of operands : registers, immediates, memory addresses
Instructions takes one or none operands (W is supposed as default
destination but can also be used as source).

=⇒ Makes DuskOS kernel bigger but allows several parts of DuskOS of
being arch-independent, making it more portable.

17 / 29

DuskOS: Kernel
DuskOS kernel can be divided in 3 parts :

FORTH Core Engine (seen above)
Harmonized Assembly Layer (seen above)
Arch-specific code (bootstrap, configuration, ..)

On the ARM port, this is equivalent to 1000 lines of code.

DuskOS kernel can be small thanks to :
FORTH very minimalist approach.
The HAL making several system’s layers arch-independent.

=⇒ Allows DuskOS to be easily ported and understood (by a software
engineer at least).

18 / 29

DuskOS: Global architecture
DuskOS live-system could be divided in those 3 parts :

DuskOS Kernel (≈ 75 words to implement)
≈ 7 KB

DuskOS Interactive environment
≈ 85 KB

DuskOS Apps (text editor, assemblers, ...)

Minimal computer ?
Fully written in FORTH

≈ 92 KB

How do I generate a DuskOS image ?

19 / 29

DuskOS: Cross-assembling mechanism (1)
=⇒ Bootstrap: DuskOS C VM cross-assemble for new architecture

DuskOS
(C VM)

DuskOS
(ARM)

Cross-assembling

=⇒ DuskOS ARM can now live on its own and generate new images

DuskOS
(ARM)

DuskOS
(i386)

Cross-assembling

20 / 29

DuskOS: Cross-assembling mechanism (2)
xcode @,

ax HAL16B i) test, L2 abs>rel jnz,
ax HAL8B i) test, L2 abs>rel jz,
forward! ax $8a00 i) or,
lblregulwr absjmp,

How does it work ?
Creation in memory of a cross-dictionary
"xcode" allows to assemble a word going in the cross-dictionary
Copy of the cross-dictionary in the new DuskOS binary image
Wrapping with some boot code, here is a working DuskOS image

=⇒ Allows DuskOS to build images of itself, and so to be self-sufficient

21 / 29

DuskOS: Case study (3)

We talked about three DuskOS features:

FORTH: a portable and minimalist language

DuskOS HAL: a minimal assembler for a virtual stack machine

DuskOS replication: cross-assembling

They contribute to three technical properties we were interested in:
Portability, self-sufficiency and understandability

What those technical properties bring to our three essential values ?

22 / 29

DuskOS: Case study (4)

Properties

Values Self-defined
work

Justice Resiliency

Portability
Can use it without
worrying about
hardware

Everyone can port
it on what she
wants

Adapt easily
to a change of
hardware

Self-sufficiency
User doesn’t have
to use external
tools

Having one
DuskOS live offers
every possibilities

Can maintain itself
without external
help

Understandability Easily modifiable
Everyone is able
to access and use
the tool

The system
is more easily
adapted

23 / 29

DuskOS: Case study (4)

Properties

Values Self-defined
work

Justice Resiliency

Portability
Can use it without
worrying about
hardware

Everyone can port
it on what she
wants

Adapt easily
to a change of
hardware

Self-sufficiency
User doesn’t have
to use external
tools

Having one
DuskOS live offers
every possibilities

Can maintain itself
without external
help

Understandability Easily modifiable
Everyone is able
to access and use
the tool

The system
is more easily
adapted

23 / 29

DuskOS: Case study (4)

Properties

Values Self-defined
work

Justice Resiliency

Portability
Can use it without
worrying about
hardware

Everyone can port
it on what she
wants

Adapt easily
to a change of
hardware

Self-sufficiency
User doesn’t have
to use external
tools

Having one
DuskOS live offers
every possibilities

Can maintain itself
without external
help

Understandability Easily modifiable
Everyone is able
to access and use
the tool

The system
is more easily
adapted

23 / 29

What’s next?

DuskOS is capable of a few of what we thought of as desirable applications
(text editing, programming), but not all (wikipedia client for example)
That’s why we might want to keep (co-)building DuskOS, by adding new
software bricks, which would allow new desirable use of this tool

Here is a few examples of software bricks that could be interesting to add:
Concurrency
Memory protection
Language typing
...

Should they be added and in which shape ?

24 / 29

Do they bring anything to the table ?

Properties

Values Self-defined
work

Justice Resiliency

Concurrency
model ?? ?? ??

Memory
protection ?? ?? ??

Language
typing ?? ?? ??

We are not trying to decide alone, so give us your insights !

25 / 29

WIP: Abstract concurrency ?

If we decide that concurrency is desirable, a concurrency model could
be a new tool, allowing users to make a better use of their personal computer

Adding a concurrency model would raise several questions:
Could it be implemented with the HAL only ?
What should the execution model be like ?
What should the programming model be like ?

We’re still exploring the different kinds of concurrency, to identify one that
would “fit in the doughnut”

26 / 29

Two research directions

To summarize our approach :

Give the tool a proper shape
Our technical tools help us shape our world, so in order to change the
current shape of our world, we have to rethink our tools

Question our needs and usage
Our needs can be answered by other means than the technological ones,
using digital technologies should be a decision, not a default response

Both of them have to be tackled from a trans-disciplinary angle

27 / 29

Conclusion
Why is that Undone Science ?

Recognize “economical growth” as a dogma we wont take part in
Low or non-profit possible from this kind of research
Trans-disciplinary research
Challenge the “innovation is the solution”

A new methodology to design technical tools ?
Matrix crossing technical properties and human values
“If a technical property isn’t filling any box, should it be added ?”
Refine our thinking by crossing with Ethical matrix1(stakeholders /
principles) and Max-Neef matrix2(needs / existential categories)

1Ben Mepham - Ethical Matrix Manual
2Manfred Max-Neef’s Fundamental human needs

28 / 29

Conclusion

Thank you for listening !
Any questions ?

29 / 29

