

Undone Computer Science 07.02.23

Global and local implications

in programming languages

Pierre Depaz

Paris-3 Sorbonne Nouvelle

Undone Computer Science 07.02.23

Introduction

This contribution examines the notion of
scaling through programming languages.

What I will present this morning is a contribution on the relationship between
local and global in computer science, and particularly in software of
engineering, and how it supports the design and implementation of
particular pieces of software in the real world.

And in order to examine this relationship of local and global, we will examine
the notions through the prism of geography.

Undone Computer Science 07.02.23

Introduction

One of the goals of software engineering is the
ability to scale.

Tsing, A. L. (2012). On Nonscalability: The Living World Is Not Amenable to
Precision-Nested Scales. Common Knowledge, 18(3), 505–524.

This was mentioned yesterday by Florence Maraninchi, as she talked about
expensibility and generality

Undone Computer Science 07.02.23

Introduction

Scaling up: adding more resources to a machine

Scaling out: adding more machines with the same resources

Scaling down: considering smaller software teams

Boddie, J. (2000). Do we ever really scale down? IEEE Software, 17(5), 79, 81.

Laitinen, M. (2000). Scaling down is hard to do. IEEE Software, 17(5), 78, 80.

Martin Kleppmann. (2017). Designing Data Intensive Applications The Big Ideas
Behind Reliable, Scalable, And Maintainable Systems.

Northrop, L., Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidt, D., Sullivan, K., & Wallnau, K. (2006). Ultra-Large-

Scale Systems: The Software Challenge of the Future (ADA610356). Software
Engineering Institute.

The impetus to scale positively (scaling up, or scaling out) is something that
seems to be taken for granted in software engineering research, a
research that is focused on dealing with more data more efficiently, rather
than consider whether one could deal with less data.

Undone Computer Science 07.02.23

Introduction

By 2040, the IT sector is estimated to account
for 14% of world emissions.
1/3 of these emissions come from software.

Lees Perasso E., Vateau C., Domon F., avec les contributions de Aiouch Y.,
Chanoine A., Corbet L., Drapeau P., Ollion L., Vigneron V. Prunel D., Ouffoué

G., Mahasenga R., Orgelet J., Bordage F. et Esquerre P. (2022). Evaluation
environnementale des équipements et infrastructures numériques en France.

États des Lieux et Pistes d’Action.

Podder, S., Burden, A., Singh, S. K., & Maruca, R. (2020, September 18). How
Green Is Your Software? Harvard Business Review.

The context that prompts such a study is the increasing part that the IT sector is taking in
carbon emissions and climate change. That is, emissions are increasing, even though
they should be decreasing.

These emissions are roughly split between 78% of hardware production of terminals, and
21% of (software) use of these terminals.

Undone Computer Science 07.02.23

Introduction

Research on programming languages and
sustainable development is largely focused on
optimizing energy usage.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L., &
Clause, J. (2016). An empirical study of practitioners’ perspectives on green software

engineering. Proceedings of the 38th International Conference on Software Engineering.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J., & Saraiva, J. (2017).
Energy efficiency across programming languages: How do energy, time, and memory relate?

Huber, S., Lorey, T., & Felderer, M. (2023). Techniques for Improving the Energy Efficiency of
Mobile Apps: A Taxonomy and Systematic Literature Review. 2023 49th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA).

Kp, G., Pierre, G., & Rouvoy, R. (2023). Studying the Energy Consumption of Stream
Processing Engines in the Cloud. 2023 IEEE International Conference on Cloud Engineering

(IC2E).

During the past decade, a lot of the research on software development and carbon
emissions has been focused on optimizing the footprint of a programming language in
terms of speed and energy consumption, within particular computing platforms: mobile
applications, or cloud applications.

It’s important to develop a way to optimize, not just for speed and efficiency, but also for
energy. New metrics also help to frame things differently.

Undone Computer Science 07.02.23

Introduction

The Jevons paradox observes that increased
efficiency is linked to increased consumption.

Saunders, H. D., & Tsao, J. Y. (2012). Rebound effects for lighting. Energy Policy,
49, 477–478. https://doi.org/10.1016/j.enpol.2012.06.050

Wirth, N. (1995). A plea for lean software. Computer, 28(2), 64–68.

York, R., & McGee, J. A. (2016). Understanding the Jevons paradox.
Environmental Sociology, 2(1), 77–87.

However, optimization might not be the exclusive solution to the problem of energy waste
and abuse.

The Jevons paradox phrases it nicely, named by a British economist who was puzzled by
the fact that the steam engine, which was an optimization of energy usage of coal,
was accompanied by an increase in coal consumption.

Jeffrey Tsao and his team have found similar results in the context of LED technology.

Similarly for “lean software”, as Niklaus Wirth was observing that improvements in
hardware were compensated by bloat in software.

Undone Computer Science 07.02.23

Introduction

Scénario S1
Générations Frugales

S2
Coopérations
Territoriales

S3
Technologies
Vertes

S4
Pari Réparateur

Technique Règne du low-tech Numérique au
service du
développement
territorial

Technologies
pour décarboner

Innovations tous
azimuts

ADEME (2021), Prospective - Transitions 2050 - Résumé exécutif, Horizons.

Crozat, S. (2023). Low-technicisation et numérique [Séminaire de recherche].
Seminar on Digital Environmental Policies, Centre Internet et Société.

In order to mitigate the dramatic effects of climate change, there are multiple
possibilities. The french agency for ecological transition, ADEME, lays out
4 different scenarios to reach the emissions goal by 2050 (Ademe, 2021).
But often engineering schools focus on scenarios 3 and 4, bypassing
scenarios 1 and 2.

The current goal of the system I would like to question here is the necessity
for a software system to scale. Not questioning the goal to scale means
that we remain within scenarios 3 and 4 of the Ademe (where more
technology is the solution), and ignore the scenarios 1 and 2 (where more
technology is the problem).

Undone Computer Science 07.02.23

Introduction

PLACES TO INTERVENE IN A SYSTEM

(in increasing order of effectiveness)

9. Constants, parameters, numbers (subsidies, taxes,
standards).

8. Regulating negative feedback loops.

7. Driving positive feedback loops.

6. Material flows and nodes of material intersection.

5. Information flows.

4. The rules of the system (incentives, punishments,
constraints).

3. The distribution of power over the rules of the
system.

2. The goals of the system.

1. The mindset or paradigm out of which the system
— its goals, power structure, rules, its culture —
arises.

Meadows, D. (1999). Leverage Points: Places to Intervene in a System. The
Sustainability Institute.

This research can also be inscribed in the framework of Donella Meadows’ Places to
Intervene in a System. As one of the co-authors of the Limits to Growth report, she
highlights the different ways one can adjust a system to meet varisou goals.

It has different points, with different amounts of granularity. Here we would suggest to
focus less on points 9-6, and rather 4-2, and particularly the goals of the system.

Undone Computer Science 07.02.23

Introduction

Implementation details over the whole lifecycle.

Software = design + programming + use

Simon, T., Rust, P., Rouvoy, R., & Penhoat, J. (2023, June 5). Uncovering the
Environmental Impact of Software Life Cycle. International Conference on

Information and Communications Technology for Sustainability.
https://inria.hal.science/hal-04082263

So, in order to complement research on the strictly technical energy
efficiency of programming languages, it’s also necessary to study the
implications of programming languages within the higher-level leverage
points, but also the design and the use of programming languages.

Undone Computer Science 07.02.23

Introduction

Global, local and scale as geographical
concepts.

Herod, A. (2010). Scale. Routledge.

Hess, D. J. (2009). Localist Movements in a Global Economy: Sustainability,
Justice, and Urban Development in the United States. MIT Press.

But in order to understand scale as more than “doing more”, the assumption here is that
we can benefit from interdisciplinarity as a shift in perspective.

If we start by looking at it naïvely, there seems to be an overall negative connotation of
globality, following a period of hype (e.g. McLuhan's global village, or the global
computing of the late 1990s-early 2000s). For instance, the process of bringing
economic and political activities up to a global level, e.g. the phenomenon of
globalization, has had some detractors. Localism, thinking locally, etc. have gained
some traction in recent years (locally-sourced products, local communities, etc.).

So this seems, at first, to be a somewhat simple dichotomy of global things being bad,
and local things being good.

Undone Computer Science 07.02.23

Introduction

Scale as (1) ideal concepts or (2) socio-material
productions.

Hart, J. F. (1982). The Highest Form Of The Geographer’s Art*. Annals of the
Association of American Geographers, 72(1), 1–29.

Smith, N. (1992). Geography, Difference and the Politics of Scale. In J. Doherty,
E. Graham, & M. Malek (Eds.), Postmodernism and the Social Sciences.

Palgrave Macmillan UK.

In geography, the state of the art in this field is essentially divided between
an idealist conception and a materialist conception.

For those who idealists, the local and the global are seen as part of a pre-
existing conceptual matrix of scales within which social life is lived. As
such, they are simply cognitive devices for enveloping and ordering
processes and practices so that these may be distinguished and separated
from one another as part of a hierarchy of resolutions – a particular
process or set of social practices can thus be considered to be ‘local’
whereas others are considered to be ‘global’ in scope. Within such an
analytical framework, the ‘global’ is usually defined by the geologically
given limits of the earth, whereas the ‘local’ is seen as a spatial resolution
useful for comprehending processes and practices which occur at
geographical ranges smaller than the ‘regional’ scale, and where proximity
makes sense.

For materialists, on the other hand, the key aspect of geographical scale
is to understand that scales are socially and materially produced through

processes of struggle and compromise. Hence, for instance, the ‘national’
scale is not simply a scale which exists in a logical hierarchy between the
global and the regional but, instead, is a scale that had to be actively
created through economic, technological and political processes, such as
signing treaties, minting coins, and building roads.

Undone Computer Science 07.02.23

Introduction

The position we take here is that programming
languages take part in constitute global or local
scales.
They are intentionally produced artefacts with a
purpose.

Leonardi, P.M. (2010). Digital materiality? How artifacts without matter, matter.
First Monday, Volume 15, Number 6 - 7 June 2010.

Kitchin, R., & Dodge, M. (2011). Code/Space: Software and Everyday Life. MIT
Press.

Turner, R. (2014). Programming Languages as Technical Artifacts. Philosophy &
Technology, 27(3), 377–397.

This morning, we intend to show how programming languages can be considered part of
the processes constituting these scales.

First because programming languages create software, and because software norms our
interactions with space, by deploying apparatuses for synchronicity and immediacy.

Second, because programming languages are the digital material of software. That is, they
make ideas become manifest, they allow the embodiment of a model within practical
limits (implementation). Finally, as technical artefacts, they have an intent and a
function, and that function can related to processes of scaling.

The way we're going to work through this is therefore through the lens of software
studies, which considers the digital objects such as programming languages are
actants in a network, to take Latour’s terminology, and that they contribute to the
construction of the world..

Undone Computer Science 07.02.23

Introduction

How do programming languages contribute to
understanding of scales?

How can they help us think about scaling
down?

Undone Computer Science 07.02.23

Introduction

1. GoogleSQL and globality
2. Automerge and local-first
3. PeachCloud and material cloud

We will proceed with three different case studies, highlighting the features and contexts of
three different ways in which programming languages are involvedin the production of
scale.

First, we will be looking at this impetus for globalization in software and how it is
decoupled from materiality, via the example GoogleSQL.

Second, we will inquire into the relationship between being local, and being offline, and
whether this has a strict 1:1 equivalence, highlighting concepts of dependence with
JavaScript and the automerge library.

In the third part, we will consider locality from a material perspective with the role of Rust
in the PeachCloud project.

In conclusion, we'll suggest some further avenues for crossovers between social sciences
and computer science, via the reframing of certain terms.

Undone Computer Science 07.02.23

1. Constituting globality

Undone Computer Science 07.02.23

1. Constituting globality

Programming languages abstract the locality of
the machine.

Ritchie, D. M. (1993). The Development of the C Language. Second History of
Programming Language Conference.

Wirth, N. (2003). The Essence of Programming Languages. In L. Böszörményi &
P. Schojer (Eds.), Modular Programming Languages (pp. 1–11). Springer.

https://doi.org/10.1007/978-3-540-45213-3_1

If we consider the local as the physically immediate, programming languages have
historically tended to hide this physicality.

The advent of portable operating systems, epitomized with UNIX in the late 1970s, also
suggested a move to _portability_: the ability for a programming language to support
translation of a software onto another platform. This is particularly salient in the case
of the C programming language, whose portability both supported the broadcasting of
the UNIX operating system and was accelerated by the diffusion of UNIX. As such, the
operating system enabled a layer of abstraction and becomes the new local, erasing
the hardware.

As we follow this dynamic of higher level, higher abstraction, and higher portablity,
throughout operating systems, virtual machines and sandboxed environments, one
path leads us to WebAssembly, a language re-creating a virtual machine in the web
browser. WebAssembly, by returing to the roots of Assembler programming, resets a
cycle of development, by re-creating a starting point for any software to be run
anywhere, a recursive loop that also highlights the relativity of the distinction between
local and global.

This first case of globalization is thus a dynamic of abstraction of the individual machine.

Undone Computer Science 07.02.23

1. Constituting globality

Global computing as predecessor of cloud
computing, through networking

Google. (2024). Google Trends. Google Trends.
https://trends.google.com/trends/explore?date=all&q=global

%20computing&hl=en

A second aspect of the portability of software comes with its distribution infrastructure.
The World Wide Web enabled the wide sharing of software, by passing traditional
supply chains. With the design and adoption of the Common Gateway Interface, it’s
not longer clear which machine is doing the computation.

Indeed, the term global computing is trending somewhat concommitantly with the advent
of the commercialized Web.

Undone Computer Science 07.02.23

1. Constituting globality

Multiple networked machines produce
information, which can be managed.

One of the answers to this problem is
BigQuery.

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., & Vassilakis, T. (2010).
Dremel: Interactive analysis of web-scale datasets. Proc. of the 36th Int’l Conf on Very Large Data Bases,

330–339. http://www.vldb2010.org/accept.htm

Along with this dynamic of decoupling software from hardware, and further obfuscating
the material presence of the machine, another dynamic is that of large-scale data
creation. Programming is an information management technique which, in turn,
produces new information, and this information soon exceeds the processing capacity
of a single local machine.

In this case, programming languages constitute part of a solution to deal with large scale,
distributed data. One of the most popular, and most large-scale solutions to this
problem is BigQuery. BigQuery is Google’s data warehouse, launched in 2010, and it
provides a web interface to a broader query system called Dremel.

Undone Computer Science 07.02.23

1. Constituting globality

GoogleSQL is the query language from Google’s
BigQuery data exploration system:

- query language

- procedural language

- data definition

- data manipulation

- data control

Google. (2024, January 31). Introduction to SQL in BigQuery | Google Cloud.
Google Cloud. https://cloud.google.com/bigquery/docs/introduction-sql

In order to interact with those systems, you need to use GoogleSQL, a multi-faceted ad
hoc programming language, which allows the user to productively harness the larger
and larger amounts of data that are made available.

It’s an SQL dialect, but also has procedural aspects. The procedural aspects are ways to
do control flow within this environment, and therefore to treat SQL queries as
statement within statements, thus making the large-scale of data creation more easily
manipulable.

GoogleSQL, can be considered here as one of the participants in the mediation of
globalized exploitation of corporate data unifying a network of localized hardware
through a software layer.

Undone Computer Science 07.02.23

1. Constituting globality

Language with an ecosystem:
- data warehouses
- Google Cloud Platform
- financial limits

Franklin, M., Halevy, A., & Maier, D. (2005). From databases to dataspaces: A
new abstraction for information management. ACM SIGMOD Record, 34(4)

GoogleSQL also does not exist in a void, but in a network of dependencies and
constraints. The Google Cloud Platform creates dependence on a cloud corporation.

This implies a kind of pay-as-you-go programming, highlighting the financial limits, but not
the energy limits, of what you can do with the programming language.

Concurrently, we can also identify a discursive reconceptualization of data storage and
management systems: from databases to dataspaces, a dynamic that follows this
process of abstraction and co-existence of various, disjointed pieces of data operating
under different varieties of schemas and out of the control of the user.

Undone Computer Science 07.02.23

1. Constituting globality

MapReduce as a programming paradigm to
further abstract the machines.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1).

GoogleSQL also exists in the vicinity of other programming techniques to handle this
global scale, specifically to deal with that distribution of multiple groups of machines
across geographic localities.

This movement can be seen in particular in the MapReduce programming model, which
was first described in a paper by Google employees (Dean and Ghemawat, 2005).
MapReduce is a programming model (not quite a programming language) which
essentially aims at unifying diverse sources of data. Originally designed for the Google
web search service, global service if there is one, the way that _MapReduce_ proposes
to operate is through a first step of harmonization (mapping the diverse/unprocessed
inputs to harmonized/normalized outputs), followed by a second step of conflation, in
which diverse inputs are operated on in order to collapse into a single output,
effectively merging (or abstracting) the multiple into one.

Interestingly, MapReduce paradigm only proves to be more effective when multiple
machines are involved to complete the computation. If only one machine is needed as
a data source, it has no particular benefits.

Undone Computer Science 07.02.23

// Tuning parameters: use at most 2000
// machines and 100 MB of memory per task
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) abort();

// Done: 'result' structure contains info
// about counters, time taken, number of
// machines used, etc.

1. Constituting globality

 Indeed, we can even see the mention of machines as ontologically grouped in the source
code of the original paper:

The modularity and “summoning” of machines is embedded in the MapReduce proposed
paradigm.

Undone Computer Science 07.02.23

1. Constituting globality

Infrastructure as code further automates the
hardware.

So we have this requirement to deal with multiple machines, across different geographical
locations.

But global infrastructure is still infrastructure, and as such there is a need to materialize the
physical things. This requirement manifests itself through programming languages,
under a paradigm of configuration languages, or _infrastructure as code_.

There are generally two approaches to IaC: declarative (functional) vs. imperative
(procedural). The difference between the declarative and the imperative approach is
essentially 'what' versus 'how' . The declarative approach focuses on what the eventual
target configuration should be; the imperative focuses on how the infrastructure is to
be changed to meet this.

Is it then that it’s better to use imperative over declarative? To know how things get done
rather than automagically getting there? This I am unsure about, but the fact is that we
work with new languages to work with new scales.

Undone Computer Science 07.02.23

1. Constituting globality

Configuration
languages to
summon machines:
- Chef
- Puppet
- Terraform

resource "aws_instance" "server" {
 count = 4 # create four similar EC2
instances

 ami = "ami-a1b2c3d4"
 instance_type = "t2.micro"

 tags = {
 Name = "Server ${count.index}"
 }
}

HashiCorp. (2023). The count Meta-Argument—Configuration Language. Terraform | HashiCorp
Developer. https://developer.hashicorp.com/terraform/language/meta-arguments/count

It is no longer about running single applications on a local computer, but rather swaths of
individual machines connecting to a single piece of software.

Infrastructure as code is that infrastructure is actually subdued as code. It is integrated
into the software itself how many machines should be spinned up or taken down.

Code is expendable, people don't really count their CPU cycles, so infrastructure as code
might be enabling a waste of resources and obliviousness of what the physical
implications are. Making infrastructure as code is the epitomy of "scaling up".

Undone Computer Science 07.02.23

1. Constituting globality

The reification of globalisation takes place
through making the increasing abstraction of
increasing amounts of materials usable.

So in this case we can see how programming languages take an active part
in making the results of globalization actionable (that is, enabling activities
across the globe and untethered to the specifics of a geographical or
material connection).

They do this through the general process of abstraction, and by developing
new programming languages to harness the new problems that emerge
with scale.

As such, the feature of programming languages to create abstractions can
be mapped to the abstracting processes of global business intelligence.

Undone Computer Science 07.02.23

2. Imaginations of the local

We now turn to how programming languages can contribute to a conception of the local.

Undone Computer Science 07.02.23

2. Imaginations of the local

Localhost and offline as the local, a space that
is physically and intuitively graspable.

Standing as a negative definition of "global computing", "distributed computing", or “cloud
computing”, "local computing" is first and foremost related to a specific machine.
Furthermore, we can look at it not just as a specific machine, but also through its
status with regards to network interfacing, as illustrated with the term `localhost`, a
hostname which loops back to itself instead of coming from another node on a
network.

In this case we're not so much talking about a physical device as a networked device:
there is a different conception of locality which emerges with the popularization of the
web. The individual processor architecture is abstracted away, but the differentiation
becomes access to the network.

Undone Computer Science 07.02.23

2. Imaginations of the local

Default assumptions of being online to interact
with software.
(Moodle, Google Docs, etherpad, MS
Python, ...)

Gwynne, S., & Kuligowski, E. (2010). The faults with default. Proceedings of the
2010 Interflam Conference. Interflam, London, UK.

Leyva, J. (2016, October 19). Access Your Learning Offline. Moodle.

JohnMcLear. (2013). Don’t create network traffic unless needed Issue #1384 · ·
ether/etherpad-lite. GitHub.

A few cases can highlight this "_online-first_" imperative, in which the
networked is considered to be the default way of being in the (computing)
world.

As the covid-induced distance learning has shown, not everyone has always
access to a reliable network, a problem which was previously identified but
understudied. In this case, locality, considered as exclusion from globality
(through distance learning), becomes very apparent.

In the case of Moodle, there was a gap of three years between the release of
their mobile application and the feature update which allowed users to
work offline.

In the case of online document editing, such as Google Docs or Etherpad,
the intersection of their growing ubiquity and network requirements
highlights another default scale at which the network operates: one cannot
edit, or see a document if one is not online.

Finally, the case of the recent release of Python in the Microsoft Excel
spreadsheet highlights the role of dependencies. Python is a language
which runs perfectly fine on Windows and MacOS machines, but the Excel
implementation requires an active network connection as the Python code
is being interpreted on Microsoft's servers, one of the reasons being to
automatically manage Python modules as dependencies.

Undone Computer Science 07.02.23

2. Imaginations of the local

Network connectivity as a space of
dependence.

A space within which the value circulating is
essential to one’s needs.

Cox, K. R. (1998). Spaces of dependence, spaces of engagement and the
politics of scale, or: Looking for local politics. Political Geography, 17(1)

One geographical definition of the local vs. the global is the identification of, and
agreement with, the thing which one depends on (Cox, 1998).

Kevin Cox formulates the local as contingent with a space of dependence: the space
within which the value circulating is essential to one’s needs.

In our previous examples, the space of dependence is therefore network connectivity
broadly understood, and the large amount of polluting cloud infrastructure that comes
with it.

Deciding to manage somewhat manually one's own dependencies might therefore be seen
as an act of constructing a local-first computing environment, rather than a global-first.

Undone Computer Science 07.02.23

2. Imaginations of the local

Automerge is a software library implemented as
a Conflict-Free Replicated Data Type (CRDT).

Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011). Conflict-Free
Replicated Data Types. In X. Défago, F. Petit, & V. Villain (Eds.), Stabilization,

Safety, and Security of Distributed Systems (pp. 386–400). Springer

Kleppmann, M., & Beresford, A. R. (2018). Automerge: Real-time data sync
between edge devices. Self-published.

Jahns, K. (2021, June 11). How we made Jupyter Notebooks collaborative with
Yjs. Medium.

So one way to redefine this space of dependence is to bypass this network requirement.
One of the attempts to do so can be seen in the automerge data structure, which
enables seamless offline and online collaboration.

CRDTs are fairly recent in their development, but did not start with Automerge. In fact,
they were already proposed by a french computer scientist, Marc Shapiro, and his
colleague, Nuno Preguiça. Proposed in multiple scientific articles in the mid-2000s, the
concurrent advent of Google Docs in 2006 made the technology immediately obsolete,
according to Shapiro.

CRDTs have nonetheless been gaining traction recently, as the implication of operating
within certain spaces of dependencies becomes more obvious. For instance, Jupyter
Notebooks, a popular data science app, restored its collaboration tools using CRDTs
after Google got rid of the cloud service it had previously depended on.

Undone Computer Science 07.02.23

2. Imaginations of the local

An original JS implementation, proof of
application in prototypal software (e.g.
PushPin, Peritext).

Rewrite in Rust for production.

Litt, G., Lim, S., Kleppmann, M., & van Hardenberg, P. (2022). Peritext: A
CRDT for Collaborative Rich Text Editing. Proceedings of the ACM on Human-

Computer Interaction, 6(CSCW2), 531:1-531:36.

van Hardenberg, P. (2023, January 17). Automerge 2.0 | Automerge CRDT.
Automerge.Org. https://automerge.github.io/blog/automerge-2/

CRDTs are data structures that allow each user to edit their local copy of a document,
and which ensure that different users’ copies can be cleanly merged into a consistent
result. Such data structures enable two clients to edit the same document, without
consequences in terms of network connectivity: the canonical state of the document is
resolved without conflict when a client regains network access and receives updates
from other clients. In that sense, CRDTs change the online dependency in the
software.

The original implementation was written in JavaScript, and the rationale for that was to
have a flexible language to experiment with the data type at a theoretical level, before
re-writing it in Rust for a production-ready environment. In this case, using choosing
JavaScript allows for a flexibility of experimentation.

Undone Computer Science 07.02.23

2. Imaginations of the local

Discursive manifestation with “local-first”

“The key difference between traditional systems and local-first
systems is not an absence of servers, but a change in their
responsibilities: they are in a supporting role, not the source of
truth.”

Kleppmann, M., Wiggins, A., van Hardenberg, P., & McGranaghan, M. (2019).
Local-first software: You own your data, in spite of the cloud. Proceedings of

the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software.

Through a very concrete technical research into a data structure, there are actually two
things:

A manifesto for an ideal of scale (a so-called `local-first` approach) which facilitates the
framing of the scale at which software is supposed to operate

Anda also a concrete, material contribution to making operating at this scale a realistic
possibility.

Undone Computer Science 07.02.23

2. Imaginations of the local

Languages and data structures: ideas through
agnosticity, de-scaling as a space for
engagement.

So what Automerge is an example of is the gradual movement from idea, to broad JavaScript
implementation, to careful Rust rewrite, showcasing the way in which ideas are gradually reified into
efficient software systems.

It is also an example as introducing a (somewhat) new data structure for a new conception of the scale(s) at
which one works, rather than optimizing an existing one.

Nonetheless, it’s important to point out that Ink&Switch never mentions energy efficiency, and this is my
personal framing: by reducing a reliance on the cloud, one also reduces the footprint of the cloud. What
they do advocate for is a new way of working, and thus a different way to engage with the use of
technology.

Finally, the use of a certain programming language is only one part of the contribution, especially since JS is
not very energy efficient, but it allows you to test an idea easily. It’s also about devising a discursive
framing with manifestoes, something which Cox calls spaces of engagement, networks of involvement
that go beyond a strict data structure and its implementation.

Undone Computer Science 07.02.23

3. Material and social engagements

We now turn to our last example, focusing on Rust and materiality.

Undone Computer Science 07.02.23

3. Material and social engagements

Scales can be seen the result of social actors
engaging in discursive organization.

Lempert, M., & Summerson Carr, E. (Eds.). (2016). Scale: Discourse and
Dimensions of Social Life. University of California Press.

As discussed by Lempert and Summerson Carr, the scales that social actors rely upon to
organize, interpret, orient, and act in their worlds are not given but made, sometimes
rather laboriously so, traditionally by using natural languages and in our case, also by
using programming languages.

This example focuses on the interaction of scale, sociality and technology through the
material instantiation of a social network based on the SecureScuttleButt protocol.

Undone Computer Science 07.02.23

3. Material and social engagements

SecureScuttleButt (SSB) is a protocol for
gossip-like, machine-mediated, social
interactions.

Tarr, D., Lavoie, E., Meyer, A., & Tschudin, C. (2019). Secure Scuttlebutt: An
Identity-Centric Protocol for Subjective and Decentralized Applications.

Proceedings of the 6th ACM Conference on Information-Centric Networking.

SecureScuttleButt’s protocol design is centered on user-first, and LAN first.

It has its roots in the gossip protocol family. These are based on models of rumor
distribution, or epidemics - essentially a more or less random selection of peers to
whom the information will spread. The approach is therefore clear: the aim is to define
a technical protocol as a simulation of natural phenomena, based on the principle that
information will have social patterns within it.

SSB's starting axiom is also offline availability: the protocol and its applications must be
usable when not connected to the Internet. All data storage and access takes place
locally, and updating or synchronization of this data takes place when, and if, there is a
connection to another member of the network. SSB replicates, in a protocol-based
way, the experience of life at sea - a local experience if ever there was one - by
allowing synchronization between two peers only if they are connected to the same
WiFi network.

Undone Computer Science 07.02.23

3. Material and social engagements

PeachCloud is the physically
concrete version of SSB

“We aim to return (cloud)
computing back into our homes
and local communities in a way
which fosters increased trust in
one another and the socio-
technical systems we inhabit ”

PeachCloud. (2019, November 9). Introduction. PeachCloud: Developer
Documentation. https://mixmix.github.io/peach-devdocs/chapter_1.html

However, nothing is ever completely global, or completely local, and therefore SSB also
includes a way for peers to centralize information, via special client peers called Pubs.

While a pub could just be run as another daemon on one’s machine, the PeachCloud
project was an initiative to bundle the SSB software necessary to run a pub into an
easy-to-use, all-in-one hardware solution.

Undone Computer Science 07.02.23

3. Material and social engagements

Using Rust as a need to engage materially.

A systems programming language feels more
welcoming than Python.

As such, PeachCloud is an alternative to the cloud, using Rust as an alternative embedded
systems language. The goal was to implement the full SSB-pub protocol, running on a
Raspberry Pi (here, version zero), along with buttons and OLED screen as a way to
favor direct material engagement with the kind of hardware that is usually stored in
data centers.

Speaking to one of the developers, he mentioned the need to connect to the rest of the
world with his choice of programming language, which justified his move from Python
to Rust.

“We chose Rust because it gives a nice feeling of presence, that I feel I had lost, or even
never really had ”

Undone Computer Science 07.02.23

3. Material and social engagements

Two implementations of the SSB protocol:
- ssb-go (written in Go by Planetary.social)
- rustle (written in Rust by Sunrise Choir)

In order to go about it, the PeachCloud team actually had the choice between two original
implementations: a wrapper around the go implementation, or an adaptation of an
existing rust implementation.

Both of these implementations also went in different directions.

The go implementation tended towards having large-scale web systems, that was
developed by a large scale social network (Planetary)

The rust implementation tended towards “a team working on solarpunk social protocols
with Scuttlebutt”, with references to a specific kind of fiction NEW IMAGINARIES→

Undone Computer Science 07.02.23

3. Material and social engagements

Programming as a
language community

“accessible to new developers and
maintainable by existing developers

friendly to other human and computer
languages, composed of orthogonal parts
that each focus on a separate concern ”

Sunrise Choir. (2020). About Sunrise Choir—Open Collective.
OpenCollective.Com. https://opencollective.com/sunrise-choir

glyph. (2020). July—October 2020 Update—PeachCloud. OpenCollective.Com.
https://opencollective.com/peachcloud/updates/july-october-2020-update

And we can see a quote from Sunrise Choir here: putting natural and machine languages
on the same footing.

This aspect of linguistic community of practice is also important to the SSB foundation
itself, as it funds tutorials written in Rust, in order to onboard as many people as
possible, and make it their own (lykin, 2021).

So if Rust chosen by other decentralized projects in part due to its community-centered
approach (it could also be interesting to consider the genesis of the Rust language at
the Mozilla foundation, a pre-existing, community-oriented non-profit foundation,
which aims at “empowering everyone”, a multiplicitly of local individuals).

Undone Computer Science 07.02.23

3. Material and social engagement

PeachCloud as a hardware project was put on
pause, due to language and funding.

The sociality of the language led to a new
project.

Problem: the project ended due to a lack of a non-JS implementation (then again assuming a
platform/connectivity) switch to fulltime work on the Rust wrapper, which is a way of showing that →
programming languages might sometime create path dependencies?

So what we could see here was an attempt to chose a language for two deliberate reasons: in order to
engage materially with a infrastructure which felt too remote, and to engage socially with other people
writing in the same language.

Undone Computer Science 07.02.23

Reflections

Undone Computer Science 07.02.23

Reflections

The creation of some programming languages facilitate thinking
about global scales.

Programming languages can be used to implement ideas of how to
do think differently, and then do things efficiently, at a different
scale.

The level of abstraction in programming languages can be
reconnected to the engagement with the materiality of computing.

So here’s what we have said so far…

Particularly, while the last two examples show ways of scaling down from the current
state of things, they also suggest interesting intertwinings between ecological
sustainability (using less resources), and social sustainability, by reframing spaces of
dependence.

Undone Computer Science 07.02.23

Reflections

Scales as “different networks of multilocalities”,
materialized in online/offline gradients.

Gibson-Graham, J. K. (2002). Beyond Global vs. Local: Economic Politics Outside the Binary Frame. In Geographies
of Power (pp. 25–60). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470773406.ch1

While the global has been assumed to be more important than the local, we can also
reconsider this dichotomy. Rather than global as hypercapitalist or local as
anticapitalist, information networks, and the technologies and languages that underpin
such networks make such a conception more tangible and more actionable.

“Code is the only language that does what it says”

Undone Computer Science 07.02.23

Reflections

Scales are socio-
technical assemblages:
a technical limitation
can usher social
transformation.

Kogawa, T. (1990). Toward Polymorphous Radio.
http://anarchy.k2.tku.ac.jp/non-japanese/radiorethink.html

Shirky, C. (2004). Shirky: Situated Software.
https://gwern.net/doc/technology/2004-03-30-shirky-situatedsoftware.html

Scaling down a technology also has social effects.

This particular approach can find its echoes in Tetsuo Kogawa's processes of mini-FM, or
ultra-local radio broadcasting. While the nature of hertzian waves depends on the
electrical power that they are being created with, the implicit impetus for radio
broadcasting aims at furthering one's reach as much as possible. Kogawa's project,
building on a loophole in Japanese regulation which allowed very weak radio
broadcasts, consisted in setting up bloc- or neighborhood-sized broadcast
infrastructure, with the unexpected, but welcome side-effect that the listeners could
walk to the radio station and say hi to the broadcasters (Kogawa, 1990).

For Kogawa, the concrete localization of technology thus changed the frame of thought
from broadcast to individuals, effectively also affecting the cognitive categories of
what is considered a valid audience, or an interesting program. Here, the material and
the ideal in the production of scale enter in a dialogue through the execution of
technological means.

This is something which Clay Shirky has highlighted as situated software: a combination
of local scale and social involvement. Between social, local and computing, situated
software offers an interesting counterpoint to the tendency of programming languages
towards abstraction.

Undone Computer Science 07.02.23

Reflections

Domain-Specific Languages

- topics
- participants
- locations

Fishman, J. A., Cooper, R. L., & Newman, R. M. (1971). Bilingualism in the
Barrio. Indiana University.

So this contribution has attempted to start thinking about the notion of scale from
computing into geographic terms. There are other terms that we might benefit in
examining what the different interpretations are.

Domains in computing is just about the computational domain: what is the digitized data
that needs to be manipulated

But if we look at it from a social science perspective, domains have more than just
functional practice:

- the location
- the participants
- the topic

It’s mostly used in socio-linguistics, but that might be an interesting lens to think about it:
whose language are we speaking and under which conditions?

Undone Computer Science 07.02.23

Conclusion

Environments

- test
- dev
- prod
- … ?

Another term which would be interesting to reconsider is that of “environment”.
Traditionally, in software engineering, the environments are either about testing,
development or production. Are there different environments in which generic software
can run? Low-power environments? Brown-energy environments? Does performance
always need to be maximized by default?

Undone Computer Science 07.02.23

Thank you!

pierre@enframed.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

