Proof, Formal and Otherwise

- Mathematical proof
- Formal proof
- Proof in Formal Methods
- Zero-Knowledge Proofs
Mathematical Proof

- A convincing argument
- Notion of “rigor” developed in the 1920s
- Hilbert’s program

Suppose $\sqrt{2}$ is rational.
That is, $\sqrt{2} = \frac{p}{q}$ for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$.
We can assume the fraction is in lowest terms.
That is, p and q share no common factors.
Then $\sqrt{2} q = p$
$2 q^2 = p^2$
So p^2 is a multiple of 2,
therefore p must be a multiple of 2.
Write $p = 2m$.
Then $2 q^2 = (2m)^2$
$2 q^2 = 4m^2$
$q^2 = 2m^2$.
So q^2 is a multiple of 2,
therefore q is a multiple of 2.
Thus p and q share a common factor.
This is a contradiction!
Thus $\sqrt{2}$ is irrational.
Formal Proof

\[
\begin{align*}
\Gamma \vdash A & \quad \Gamma, x : A \vdash x : A & \quad \Gamma \vdash t : A & \quad \Gamma \vdash B & \quad A \simeq_{\beta_1} B \\
\emptyset \vdash & \quad \Gamma, x : A \vdash & \quad \Gamma, x : A \vdash t : B & \quad \Gamma \vdash \Pi x : A. B & \quad \Gamma \vdash \lambda x : A. t : \Pi x : A. B \\
\Gamma \vdash A & \quad \Gamma, x : A \vdash B & \quad \Gamma, x : A \vdash t : B & \quad \Gamma \vdash t : \Pi x : A. B & \quad \Gamma \vdash u : A \\
\Gamma \vdash t : A & \quad \Gamma \vdash u : B \{x := t\} & \quad \Gamma \vdash (t, u) : \Sigma x : A. B & \quad \Gamma \vdash \pi_1(t) : A \\
\Gamma \vdash t : \Sigma x : A. B & \quad \Gamma \vdash \pi_2(t) : B \{x := \pi_1(t)\} & \quad \Gamma \vdash \top & \quad \Gamma \vdash \top & \quad \Gamma \vdash \top & \quad \Gamma \vdash \bot & \quad \Gamma \vdash \bot & \quad \Gamma \vdash \bot \\
\Gamma \vdash t : A & \quad \Gamma \vdash u : A & \quad \Gamma \vdash t : A & \quad \Gamma \vdash u : A & \quad \Gamma \vdash \refl_A \ t \equiv_A t & \quad \Gamma \vdash t : A \\
\vdash & \quad \Gamma, x : A, p : t \equiv_A \vdash P & \quad \Gamma \vdash q : t \equiv_A t' & \quad \Gamma \vdash u : P \{x := t, \ p := \refl_A t\} & \quad \Gamma \vdash \jmath \equiv \ (P, q, u) : P \{x := t', \ p := q\} \\
\vdash & \quad (\lambda x : A. t) u \simeq_{\beta_1} t \{x := u\} & \quad \lambda x : A. \ t \ x \simeq_{\beta_1} t & \quad \pi_1(t, t') \simeq_{\beta_1} t & \quad \pi_2(t, t') \simeq_{\beta_1} t' & \quad (\pi_1(t), \pi_2(t)) \simeq_{\beta_1} t
\end{align*}
\]
A[70 : \tau_0, 70 : \tau_1] | B[30 : \tau_0, 10 : \tau_1]

A: \text{dep}(70; \tau_0, 70; \tau_1) \Rightarrow A[70 : \{\tau_0, \tau_1\}] | B[30 : \tau_0, 10 : \tau_1] | \{70 : \tau_0, 70 : \tau_1\}

B: \text{swap}(30, \tau_0, \tau_1) \Rightarrow A[70 : \{\tau_0, \tau_1\}] | B[0 : \tau_0, 31 : \tau_1] | \{100 : \tau_0, 49 : \tau_1\}

B: \text{swap}(21, \tau_1, \tau_0) \Rightarrow A[70 : \{\tau_0, \tau_1\}] | B[30 : \tau_0, 10 : \tau_1] | \{70 : \tau_0, 70 : \tau_1\}

A: \text{rdm}(30; \tau_0, \tau_1) \Rightarrow A[30 : \tau_0, 30 : \tau_1, 40 : \{\tau_0, \tau_1\}] | B[30 : \tau_0, 10 : \tau_1] | \{40 : \tau_0, 40 : \tau_1\}

B: \text{swap}(30, \tau_0, \tau_1) \Rightarrow A[30 : \tau_0, 30 : \tau_1, 40 : \{\tau_0, \tau_1\}] | B[0 : \tau_0, 27 : \tau_1] | \{70 : \tau_0, 23 : \tau_1\}

A: \text{rdm}(30; \tau_0, \tau_1) \Rightarrow A[82 : \tau_0, 47 : \tau_1, 10 : \{\tau_0, \tau_1\}] | B[0 : \tau_0, 27 : \tau_1] | \{18 : \tau_0, 6 : \tau_1\}

Figure 1: Interactions between two users and an AMM.
1. Interactive theorem provers (Isabelle/HOL, Coq, Lean etc.)
 ▶ Mathematical proof and specification
 ▶ Proofs (almost always) by induction, computational in nature

2. Model Checkers
 ▶ Brute force proof over a discrete data type
 ▶ Custom specification language
Proof in Formal Verification

Proof.

 token_in_tx token_out_ty tx_neg_ty r_x'.

destruct t_x_data as [stor_rx_t x_data].

destruct t_x_data as [x_geq0 t_x_data].

destruct t_x_data as [rate_rx rx_geq_0].

(* first, prove that r_x' ≤ r_x while r_z = r_z' for all other rates *)

assert (r_x' ≤ r_x /

 forall t,

 t ⇔ t_x ->

 get_rate t (stor_rates cstate') = get_rate t (stor_rates cstate))

as change_lemma.

{ intros.

 is_sp_destruct.

 rewrite msg_is_trade in successful_txn.

 pose proof (trade_entrypoint_check_pf cstate chain ctx msg_payload

 cstate' acts successful_txn)

 as token_in_qty.

 do 3 destruct token_in_qty as [* token_in_qty].

 destruct token_in_qty as [token_in_qty rates_exist].

 destruct rates_exist as [rate_in_exists rate_out_exists].

 (* get the new rates *)

 rewrite <= token_out_ty in tx_neg_ty.

 rewrite <= msg_is_trade in Successful_txn.

 rewrite msg_is_trade in Successful_txn.

 pose proof (trade_update_rates_formula_pf cstate chain ctx msg_payload cstate' acts successful_txn) as updating_rates.

 destruct updating_rates as [_ updating_rates].

 destruct updating_rates as [calc_new_rate_x other_rates_equal].

 (* split into cases *)

 split.

 ≡ unfold r_x' unfold get_rate
Zero-Knowledge Proofs

Produce e.g. **ZK-SNARK** to prove **knowledge of data**.

- **Lurk:**
 “**Correct execution of Lurk expressions can be proved in zero-knowledge.**”

- Leo-lang pairs formal and zero-knowledge proof
Specification, Formal and Otherwise

- Theorem statement
- Formal statement/specification
- Statement/specification in specification language
- Execution trace/Data (?)
A proof is only as good as its statement/specification.
Features of specification engineering:

- Variables
- If ... then ... blocks
- Functions
- Hooks
- Assertions
Specifications Engineering

```c
/*
Vote is the only state-changing function.
A vote can only affect the voter and the selected candidates, and has no effect on other addresses.

Vaddress c, c ≠ {f, s, t}.
{ c_points = points(c) ∧ b = voted(c) } vote(e, f, s, t) { points(c) = c_points ∧ ( voted(c) = b ∨ c = e.msg.sender ) }
*/

rule noEffect(method m) {
    address c;
    env e;
    uint256 c_points = points(c);
    boolean c_voted = voted(c);
    if (m.selector == sig:vote(address, address, address).selector) {
        address f;
        address s;
        address t;
        require( c != f ∧∧ c != s ∧∧ c != t );
        vote(e, f, s, t);
    }
    else {
        calldata args;
        m(e, args);
    }
    assert( voted(c) == c_voted || c == e.msg.sender ) ∧∧
    points(c) == c_points, "unexpected change to others points or voted";
}
```
Features of specifications in theorem provers:

▶ Much less engineering, more like prose
▶ Quantifiers: \texttt{forall} and \texttt{exists}
▶ Arbitrary specification
▶ \texttt{Has access to formalized mathematics}, but still constrained by computation
▶ Still extremely challenging
AMM specification:
- Pricing
- Efficient market
- Liquidity providers
- Rewards distribution
- Governance
- *etc.*
There is no formal way of establishing that a specification captures a concept, but we expect to have gained from using the proof methodology because (hopefully) a specification is easier to understand than a program, so that "convincing oneself" that a specification captures a concept is less error-prone than a similar process applied to a program. (Liskov and Zilles 1974)
1. We need to tackle the meta-analysis of correct specifications.
2. Formal analysis of specification correctness which does not devolve into a tower of meta-(...-meta-specifications.

Take (pragmatic) inspiration from mathematics

- In ITPs, programs are **well-defined mathematical objects**
- Specifications gain meaning **in context** with other specifications