
Marie-Claude Gaudel,
Honorary Professor,
Laboratoire de Recherche en Informatique,
Université de Paris-Sud & CNRS

Software Testing and Formal
Specifications: a turbulent history

© M.-C. Gaudel, 05/02/2024 Undone Comuter Science Conference

About me…

•  I am a computer scientist.
•  During years, I have developed my own research.
•  I have been a member of various management

committees of research, in France and abroad.

•  I am retired. I have time to think
•  about my past research activity;
•  about what I observed.

•  I am here as a witness. This presentation is just a
personal account with some attempts of
analysis.

© M.-C. Gaudel 05/02/2024 2

 This talk is about this excerpt of the CFP

 In the seventies, it was a bizarre and dubious
idea in computer science to link the two sub-
areas below :

… undone science could also refer to the consequences of
 “theoretical commitments”, e.g. dominant paradigms,
when they blind us collectively about what is worthy or not
 of exploration—all the while accounts of paradigm shifts in
 our young domain remain rare.

•  Software testing.
•  Formal specifications of software, proofs
of program correctness.
Namely:

To use a formal specification of a software system
to test it

😱

The topic in two nutshells

(Apologies to the computer scientists in the audience)

•  A specification: a non algorithmic description of
what the program should do.

•  A formal specification: a syntax, some semantics,
possibility of inference.

•  Example:
 (max3(x, y, z) ≥ x & max3(x, y, z) ≥ y &
max3(x, y, z) ≥ z) & (x = max3(x, y, z) or

y = max3(x, y, z) or z = max3(x, y, z))
•  Only “orthodox” use of formal specifications in

the seventies : proof that a program satisfies a
specification.

Where the program is considered as a logical
formula.

The second nutshell
(Apologies to the computer scientists in the audience)

•  Software testing: execution of a system with
some inputs, and decision whether its behaviour
and the outputs are correct.

•  Structural software testing: the testing strategy is
based on the program. Test inputs are selected
to cover some constructs in it.

•  Black-box software testing: the testing strategy is
based on the specification. Test inputs are
selected to check properties stated in it.

In both methods, the specification is essential for
the decision.
Both methods are necessary (+ some other ones…)

• In the seventies, the atmosphere was
extremely tense between the advocates
of program proofs and those of
software testing.

• Some influential scientists were
exchanging mutual anathemas.

“ A common approach to get a program correct is by subjecting the
program to numerous test cases. From the failures around us we can derive
ample evidence that this approach is inadequate. ”
In EWD303, ± 1970

“ Program testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their absence.
 The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness.”
In “The Humble Programmer”, CACM 1972

 Edsger W. Dijkstra, ACM Turing Award in 1972

© Andreas Franz Borchert Creative Commons
 Attribution-Share Alike 3.0 Germany license

 Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis

“Furthermore the absence of continuity, the
inevitability of change, and the complexity of
specification of significantly
many real programs make the formal verification
process difficult to justify and manage.
It is felt that ease of formal verification should not
dominate program language design.”

Social processes and proofs of theorems and
programs.
Communications of the ACM 22, 5 (1979), 271–280.

 DeMillo is a professor at Georgia Tech University. He is not a Turing
Award, but…
among many other things, he is, with Lipton, the inventor of mutation testing
of software. He was also at the origin of a predecessor of NSFNet, etc, etc.
He had been the Director of the Software Test and Evaluation Project for the
DoD and Chief Technology Officer of Hewlett-Packard, etc, etc

https://www.linkedin.com/in/richard-demillo/

“This note concerns a very ugly paper [...].
Its authors seem to claim that trying to prove the correctness of
programs is a futile effort and, therefore, a bad idea.”

“Deprived of what is generally considered computing’s core challenge,
American Computing Science is the big loser, and we can not blame
the universities, for when the industry most in need of their scientific
assistance is unable to face that they are in a high-technology business,
even the best university is powerless.”

Edsger W. Dijkstra. A political pamphlet from the Middle Ages,
EWD638, 1979.

It is nothing but symbol chauvinism that makes
computer scientists think that our structures are so
much more important than material structures that
 (a) they should be perfect, and
 (b) the energy necessary to make them perfect
should be expended.
We argue rather that
(a) they cannot be perfect, and
(b)  energy should not be wasted in the futile

attempt to make them perfect.

 It is no accident that the probabilistic view of
mathematical truth is closely allied to the
engineering notion of reliability.
Perhaps we should make a sharp distinction
between program reliability and program perfection
—and concentrate our efforts on reliability.

 See also : Response from R. A. DeMillo, R. J. Lipton, A. J. Perlis, April 1978,
https://www.researchgate.net/publication/255678209

SOME OBSERVATIONS

•  The dispute was between formal proof of programs and
software testing (1).

•  With some notable exceptions, the two parties can be
characterised by:
•  Most advocates of formal proofs were in Europe. They worked

on the semantics of programming languages. They published
in journals and conferences that often mention “theory” or
“science” in their titles

•  Most advocates of software testing were in Northern America.
They worked on software engineering. Journals and
conferences are titled accordingly.

•  But it is too definite to see it as theoreticians/engineers
and US/Europe since:
•  there were excellent researchers in software engineering in

Europe, and excellent theoreticians in computer science in
Northern America.

(1) Formal testing what just not imaginable

Formal Testing, the beginning

•  As often, several scientists got the same idea almost at the
same time (I may miss some of them).
•  Bougé, L.: Modeling the notion of program testing; application to test

set generation. Thesis, Université Pierre et Marie Curie (Oct 1982)
•  Gannon, J.D., McMullin, P.R., Hamlet, R.G.: Data-abstraction

implementation, specification, and testing. ACM Trans. Program. Lang.
Syst. 3(3), 211–223 (1981)

•  Jalote, P.: Specification and testing of abstract data types. In: IEEE
International Computer Software and Applications Conference
COMPSAC. pp. 508–511 (1983)

•  John Gannon (Univ of Maryland) and Pankaj Jalote (Indian Institute of
Technology Kanpur) let down this risky research topic after a few
years.

•  My group pursued it…

Jumping several years later

Bernot, G., Gaudel, M.C., Marre, B.:
Software testing based on formal specifications: a theory and a tool.
Software Engineering Journal 6(6), 387–405 (1991)

Gaudel, M.C.: Testing can be formal, too. keynote lecture
In: TAPSOFT 95, International Joint Conference, Theory And Practice of
Software Development. LNCS vol. 915, pp. 82–96. Springer Verlag (1995)

Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J.,
Dick, J., Gheorghe, M., Harman, M., Kapoor, K., Krause, P.J., Lüttgen, G.,
Simons, A.J.H., Vilkomir, S.A.,Woodward, M.R., Zedan, H.:
Using formal specifications to support testing.
ACM Computing Surveys 41(2), 9:1–9:76 (2009)

But it is not a full happy end.
There are still some pockets of resistance in both camps

WHY, AND HOW…

•  I had been lucky
•  I am afraid it’s the main factor…

•  I was not a beginner. I was what the ERC calls a
“consolidated” researcher. I was honourably known
various circles: academy and industrial research.

•  I got a permanent position in 1983, then I was not afraid
to pursue this risky project.

•  But what do you need to lead a research project?
•  Funds
•  Ph.D students and young researchers to build a team (I had

been extremely lucky on this point!)
•  Places to present, discuss and publish

•  And for all that you need support from some “big
names”.

Neighbouring Scientific Communities

•  Surprisingly enough, active supports came from outside,
namely from big names of some close scientific sub-
areas.

•  Telecommunication protocols
•  must be agreed upon by various entities. Their specifications

are used as bases for conformance testing and certification.
Designers were already using formal specifications for that.

•  Chips designers
•  have been developing for quite a while test methods and tools

based on logical descriptions of such circuits. Some of them
liked the idea of similar approaches to hardware and software.

•  Researchers in software reliability
•  were very keen on rigorous and formal approaches of system

testing.

Moreover, a Win-Win Dialog between SE
and TCS was established

•  Software Engineering:
•  designing efficient test sets is time consuming and difficult.

The fact that, thanks to some formal definitions, some tools
can be developed to generate them was attractive.

•  Theoretical Computer Science:
•  the academic community was pleased with this argument

for the usefulness of their work.

•  Passing these messages required much eloquence
and conviction…

What was Hard to Stand?

•  Good students leaving the boat after their Ph. D. for safer
scientific paths.

•  Big names sarcasms, or even gentle sermons, because you
lose your time and energy.

•  Difficult acceptance in conferences and journals.
•  Funding agencies? Very difficult,
•  but feasible (with, in a few cases, a touch of insincerity).

•  Later on, when sitting in various scientific committees, I have
found extremely hard to deal with original, risky projects in the
right way. Thus I don’t hold against those people.

•  I push for a new risky (utopic?) project: to state a way to avoid
good scientific ideas to be turned into “undone science”.

 It’s the reason of my presence to-day.

