
Revisiting “Good” Software Design Principles To Shape

Undone Computer Science Topics1

Florence Maraninchi
www-verimag.imag.fr/˜maraninx
orcid.org/0000-0003-0783-9178

Verimag /Grenoble INP - UGA / Ensimag

Undone Computer Science Conference, Nantes, Feb 5th, 2024

1
ALDIWO – This project has received financial support from the CNRS through the MITI interdisciplinary programs

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 1 / 32



Summary Of Previous Episodes: Anti-Limits in Digital Systems

An anti-limit is both a promise and a

deliberate hypothesis that resources will

grow as needed.

Requires an increasing amount of resources globally (unlimited
number of cryptocurrencies relying on proof-of-work, space, or
bandwidth, ...)

Promises immediate service delivery, whatever the number of
clients and usages (most of the cloud services)

Promises unlimited storage in both space and time (Gmail)

Assumes availability of some hardware, software and vendor cloud
forever (some home automation devices)

Is designed to allow for unlimited functional extensions

Bets on the availability of a more efficient machine, soon

Needs more users or an increased usage per user to be profitable

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 2 / 32



This Paper

What’s the responsibility of the “design-for-extensibility” principle in the fact that
we do not know how to stay within limits?

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 3 / 32



This Talk

1 Is It Our Fault? Questioning Extensibility/Generalization

2 System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

3 Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

4 This Is Not A Conclusion

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 4 / 32



Is It Our Fault? Questioning Extensibility/Generalization

1 Is It Our Fault? Questioning Extensibility/Generalization
Generality / Generalizations
Extensibility
First Remarks on Lifecycles and Use Scenarios

2 System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

3 Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

4 This Is Not A Conclusion

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 5 / 32



Is It Our Fault? Questioning Extensibility/Generalization

What Do We Teach (Implicitly)?

When confronted with a student’s solution to a basic algorithm/programming exercice,
what kind of implicit assumptions do we have in mind?

— General is better than purely ad hoc
— Extensible is better than purely ad hoc
— No Redundancy is better (although, in some cases...)
— ...

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 6 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

1 Is It Our Fault? Questioning Extensibility/Generalization
Generality / Generalizations
Extensibility
First Remarks on Lifecycles and Use Scenarios

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 7 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

Generality (and Spurious Generalizations): Example

Question: compute the max of a non-empty array of positive integers
Candidate generalizations:

— A possibly-empty array of general integers
— A possibly-empty array of TypeX values, use a max-like function on TypeX values
— What if we also need the min of the array?

+ a more general component/function is more reusable.
+ it covers more cases, so less misuse errors (but we could use defensive code)
− it often involves additional initial complexity. How much should we accept?

Epigrams in programming (Alan Perlis)2: In programming, everything we do is a special
case of something more general – and often we know it too quickly.

2
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 8 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

Generality (and Spurious Generalizations): Example

Question: compute the max of a non-empty array of positive integers
Candidate generalizations:
— A possibly-empty array of general integers
— A possibly-empty array of TypeX values, use a max-like function on TypeX values
— What if we also need the min of the array?

+ a more general component/function is more reusable.
+ it covers more cases, so less misuse errors (but we could use defensive code)
− it often involves additional initial complexity. How much should we accept?

Epigrams in programming (Alan Perlis)2: In programming, everything we do is a special
case of something more general – and often we know it too quickly.

2
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 8 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

Generality (and Spurious Generalizations): Example

Question: compute the max of a non-empty array of positive integers
Candidate generalizations:
— A possibly-empty array of general integers
— A possibly-empty array of TypeX values, use a max-like function on TypeX values
— What if we also need the min of the array?

+ a more general component/function is more reusable.
+ it covers more cases, so less misuse errors (but we could use defensive code)
− it often involves additional initial complexity. How much should we accept?

Epigrams in programming (Alan Perlis)2: In programming, everything we do is a special
case of something more general – and often we know it too quickly.

2
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 8 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

Generality (and Spurious Generalizations): Example

Question: compute the max of a non-empty array of positive integers
Candidate generalizations:
— A possibly-empty array of general integers
— A possibly-empty array of TypeX values, use a max-like function on TypeX values
— What if we also need the min of the array?

+ a more general component/function is more reusable.
+ it covers more cases, so less misuse errors (but we could use defensive code)
− it often involves additional initial complexity. How much should we accept?

Epigrams in programming (Alan Perlis)2: In programming, everything we do is a special
case of something more general – and often we know it too quickly.

2
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 8 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

When asked to write a function that
returns the max of a non-empty array of
positive integers, the average student
will often deliver a more general version.

Probably because we expect them to do
so!

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 9 / 32



Is It Our Fault? Questioning Extensibility/Generalization Generality / Generalizations

The Butcher’s Approach To Writing Software

When asked to write a function that
returns the max of a non-empty array of
positive integers, the average student
will often deliver a more general version.

Probably because we expect them to do
so!

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 9 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

1 Is It Our Fault? Questioning Extensibility/Generalization
Generality / Generalizations
Extensibility
First Remarks on Lifecycles and Use Scenarios

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 10 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

Two Definitions Found On The Web

Extensibility is a software engineering and systems design principle that provides for
future growth. Extensibility is a measure of the ability to extend a system and the
level of effort required to implement the extension3.

Software extensibility encapsulates the software’s innate ability to absorb fresh features,
capabilities, or alterations, all without requiring an extensive reconstruction of its core
architecture. Think of this as building with a “future-proof” mindset (...)4.

This is always considered a desirable property. But for whom? And how much should a piece
of SW be extensible? What futures do we have in mind? What amount of added initial
complexity should we accept?

3
https://en.wikipedia.org/wiki/Extensibility

4
https://www.codium.ai/glossary/software-extensibility/

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 11 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

Two Definitions Found On The Web

Extensibility is a software engineering and systems design principle that provides for
future growth. Extensibility is a measure of the ability to extend a system and the
level of effort required to implement the extension3.

Software extensibility encapsulates the software’s innate ability to absorb fresh features,
capabilities, or alterations, all without requiring an extensive reconstruction of its core
architecture. Think of this as building with a “future-proof” mindset (...)4.

This is always considered a desirable property. But for whom? And how much should a piece
of SW be extensible? What futures do we have in mind? What amount of added initial
complexity should we accept?

3
https://en.wikipedia.org/wiki/Extensibility

4
https://www.codium.ai/glossary/software-extensibility/

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 11 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

Two Definitions Found On The Web

Extensibility is a software engineering and systems design principle that provides for
future growth. Extensibility is a measure of the ability to extend a system and the
level of effort required to implement the extension3.

Software extensibility encapsulates the software’s innate ability to absorb fresh features,
capabilities, or alterations, all without requiring an extensive reconstruction of its core
architecture. Think of this as building with a “future-proof” mindset (...)4.

This is always considered a desirable property. But for whom? And how much should a piece
of SW be extensible? What futures do we have in mind? What amount of added initial
complexity should we accept?

3
https://en.wikipedia.org/wiki/Extensibility

4
https://www.codium.ai/glossary/software-extensibility/

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 11 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

You design a car with the initial
driving-on-roads function

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 12 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

You design a car with the initial
driving-on-roads function

But you make it extensible enough so it
won’t be too difficult to add the “flying”
function later

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 12 / 32



Is It Our Fault? Questioning Extensibility/Generalization Extensibility

The Fantomas Approach to Writing Software5

You design a car with the initial
driving-on-roads function

But you make it extensible enough so it
won’t be too difficult to add the “flying”
function later

5
https://fr.wikipedia.org/wiki/Fantomas (film, 1964)

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 12 / 32



Is It Our Fault? Questioning Extensibility/Generalization First Remarks on Lifecycles and Use Scenarios

1 Is It Our Fault? Questioning Extensibility/Generalization
Generality / Generalizations
Extensibility
First Remarks on Lifecycles and Use Scenarios

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 13 / 32



Is It Our Fault? Questioning Extensibility/Generalization First Remarks on Lifecycles and Use Scenarios

What Kind Of Lifecycle Do We Have In Mind?

More general / extensible... ok but for what purposes? how much? and what amount of
added initial complexity can we afford?

What hypotheses do we make – implicitly – on the future of the system?

Do we prefer general/extensible programs because we really expect them to grow, or
just because we think they are more elegant?

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 14 / 32



Is It Our Fault? Questioning Extensibility/Generalization First Remarks on Lifecycles and Use Scenarios

Towards a System View: Norms for Software In Civil Avionics

Traceability in the DO178B:
— Each system-level requirement should be associated with some lines of object code
— Each line of object code should be traceable to some system-level requirement

Notions of:
— Dead code: will never be executed (and is not always removed by compilers)
— Deactivated code: code that could be executed in another (static) configuration, or
for a planned extension.
while extensibility is preparing for unplanned extensions.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 15 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

1 Is It Our Fault? Questioning Extensibility/Generalization

2 System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

3 Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

4 This Is Not A Conclusion

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 16 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

Creating The Illusion of Unlimited Fast Memory

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 17 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

Principles for Resource Sharing

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 18 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

Is There a System Integrator?

If we know in advance all the applications to be developed and run on a given
machine, and also their precise needs in memory and computing power, a system
design approach can be used, establishing the budget of each of them. Not
extensible but simple.

Can be the appropriate approach for critical systems
(You have to avoid “sorry, no more memory!” in the middle of a flight, anyway).

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 19 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

System View, Static Allocation, Closed System

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 20 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

No System View

If we know in advance all the applications to be developed and run on a given
machine, and also all precise their needs in memory and computing power, a
system design approach can be used, establishings the budget of each. Not
extensible, simple.

If we do not know all the applications in advance, or we want to add new ones later,
or their computing and memory needs are not known precisely, SW designers should
be allowed to work anyway, ignoring the needs and constraints imposed by others.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 21 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

No System View, Dynamic Allocation, Open Systems

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 22 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

No System View, Dynamic Allocation, Open Systems

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 23 / 32



System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

No System View

When the limits are reached anyway, what can you do?
None of the actors has sufficient control over the system.

The end-user has no choice but to buy a new smartphone, or augment the memory of
their computer (if possible).

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 24 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

1 Is It Our Fault? Questioning Extensibility/Generalization

2 System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

3 Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

4 This Is Not A Conclusion

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 25 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

Open/Extensible Systems Are Meant For Growth Scenarios
This is clear in the definition of general/extensible systems
But we observe quite counter-intuitive effects (in digital systems):

There are perfectly ad-hoc digital systems that have been running unchanged
for more than 30 years (examples in nuclear power-plants)

But the most versatile HW/SW object ever (the smartphone)
has to be replaced every 2-5 years

About “technological” objects in general:

SW is expected to make things extensible/reusable/... but 30 years is already considered
very long!

300-year-old Stradivarius violins are still usable

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 26 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

Open/Extensible Systems Are Meant For Growth Scenarios
This is clear in the definition of general/extensible systems
But we observe quite counter-intuitive effects (in digital systems):

There are perfectly ad-hoc digital systems that have been running unchanged
for more than 30 years (examples in nuclear power-plants)

But the most versatile HW/SW object ever (the smartphone)
has to be replaced every 2-5 years

About “technological” objects in general:

SW is expected to make things extensible/reusable/... but 30 years is already considered
very long!

300-year-old Stradivarius violins are still usable

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 26 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

To Stay Within Limits We Need Closed/Shrinkable Systems

Closed (Ad-Hoc) Systems:
We could design digital systems from
early precise specifications and a few
planned extensions, not for unexpected
extensions.

We could design a smartphone like a
washing machine (in which there are SW
components, but for well-defined
functions).

Shrinkable: If you do not know what the
future will be, plan for smaller (instead
of bigger) systems. Hence design for
shrinkability rather than extensibility.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 27 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

To Stay Within Limits We Need Closed/Shrinkable Systems

Closed (Ad-Hoc) Systems:
We could design digital systems from
early precise specifications and a few
planned extensions, not for unexpected
extensions.

We could design a smartphone like a
washing machine (in which there are SW
components, but for well-defined
functions).

Shrinkable: If you do not know what the
future will be, plan for smaller (instead
of bigger) systems. Hence design for
shrinkability rather than extensibility.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 27 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

Tentative Definitions of Shrinkability

Shrinkability is a software engineering and systems design principle that provides for
future degrowth. It is a measure of the ability to reduce or reconfigure the
functionalities if the resources available decrease, and the
level of effort required to implement this functional reduction.

Software shrinkability encapsulates the software’s innate ability to be simplified by
removing features or capabilities, all without requiring an extensive reconstruction of its
core architecture. Think of this as building with a “future-proof” mindset.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 28 / 32



Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

Tentative Definitions of Shrinkability

Shrinkability is a software engineering and systems design principle that provides for
future degrowth. It is a measure of the ability to reduce or reconfigure the
functionalities if the resources available decrease, and the
level of effort required to implement this functional reduction.

Software shrinkability encapsulates the software’s innate ability to be simplified by
removing features or capabilities, all without requiring an extensive reconstruction of its
core architecture. Think of this as building with a “future-proof” mindset.

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 28 / 32



This Is Not A Conclusion

1 Is It Our Fault? Questioning Extensibility/Generalization

2 System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy

3 Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW

4 This Is Not A Conclusion

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 29 / 32



This Is Not A Conclusion

Reviewers’s Questions and Suggestions
1 Optimizations aimed at getting rid of the fluff
2 Multi-mode SW, depending on resources available (dynamic switching?)
3 Dynamic/static Shrinkage (ex. in small OSes)
4 How to make this shrinking evolution desirable/sexy for developers and clients?

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 30 / 32



This Is Not A Conclusion

Reviewers’s Questions and Suggestions
1 Optimizations aimed at getting rid of the fluff
2 Multi-mode SW, depending on resources available (dynamic switching?)
3 Dynamic/static Shrinkage (ex. in small OSes)
4 How to make this shrinking evolution desirable/sexy for developers and clients?

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 30 / 32



This Is Not A Conclusion

Degrowth Scenarios and The Beauty of Ad-Hoc Systems

Decide beforehand on the use scenario
for your system; why could’nt it be a
degrowth scenario?

Invent (and teach) shrinkability
properties to replace extensibility

Change the way we think about
HW/SW objects: Preserving existing
objects, or designing new ones for
centuries, should be considered as
noble as maintaining a Stradivarius
(instead of mass-producing plastic
copies!)

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 31 / 32



This Is Not A Conclusion

Degrowth Scenarios and The Beauty of Ad-Hoc Systems

Decide beforehand on the use scenario
for your system; why could’nt it be a
degrowth scenario?

Invent (and teach) shrinkability
properties to replace extensibility

Change the way we think about
HW/SW objects: Preserving existing
objects, or designing new ones for
centuries, should be considered as
noble as maintaining a Stradivarius
(instead of mass-producing plastic
copies!)

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 31 / 32



This Is Not A Conclusion

The End. Thank you.
Questions ?

www-verimag.imag.fr/˜maraninx

F. Maraninchi (Verimag/Ensimag) Good SW Principles? UndoneCS 2024-02-05 32 / 32


	Is It Our Fault? Questioning Extensibility/Generalization
	Generality / Generalizations
	Extensibility
	First Remarks on Lifecycles and Use Scenarios

	System Design vs SW Design for Open Systems. Case-Study: Memory Hierarchy
	Scenarios For Future Uses, Open/Closed Systems, Extensible/Shrinkable SW
	This Is Not A Conclusion

