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Abstraction, Specification, and Proof

There are three concurrent, rapidly-advancing fields of computer science which share a vocabulary but do not

agree on the meaning of terms. The disciplines are verified computation via zero-knowledge proofs [1], formal

methods based in interactive theorem provers (ITPs) [13], and the formalization of mathematics [2, 12], and

the terms are abstraction, specification (or proposition), and proof. A lack of unity in meaning between these

disciplines is a matter of persistent vulnerability in software due to incorrect specification. We illustrate by

first noting the differences, and then discussing the corresponding vulnerabilities.

First, consider the term abstraction, which has two meanings [3]. From the computer scientist’s standpoint,

abstraction is an activity of information hiding. Abstractions are made to simplify complex computational

machinery so that one can more readily reason about computation, even informally, and write correct

specifications. This results in layers in a software development stack, abstract data types, and high-level

diagrams which describe system architecture. In contrast, mathematical abstraction is a means of information

neglect. When studying a mathematical object, such as a group, a mathematician seeks to discover the core,

minimal properties needed for desired behavior or results to hold. In this sense, the process of abstraction

is a process of forgetting irrelevant details, differing in substance from computer scientific abstraction [3, 5].

Both meanings of abstraction are present among the three mentioned disciplines’ notions of specification [5].

Mathematical abstraction shows itself most strongly in formalized mathematics, driving how mathematical

propositions are articulated (or specified), and most weakly in the specification of verified software. We

see mathematical abstraction in software specification particularly when that software uses mathematical

concepts—for example, in the specification of a system’s topology or operations on elliptic curves in zero-

knowledge proofs [8]. On the other hand, computer-scientific abstraction is ubiquitous in the engineering

aspects of software, thus it presents itself most strongly in software which can be formally verified or whose

execution can be verified to have occured. Even so, one still finds it in the formalization of mathematics,

since formalization is ultimately an engineering effort and features the likes of abstract data types [7].

Both meanings of abstraction are also present among the three mentioned disciplines’ notions of proof, and

it is through specification that these notions of proof relate to each other. Our contrasting notions of proof

are formal proof, which is a mathematical proof derived within a formal system, and zero-knowledge proof,

which is a cryptographic proof that a program has executed [4]. The meaning of a zero-knowledge proof

is found precisely in the executed program’s specification, thus in this context one knows the meaning of a

zero-knowledge proof to the degree that one formally understands the behavior of said program.
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Because formal methods applies formal proof to show software correct with regards to a specification, and

the act of specification itself features both notions of abstraction, we might expect to see both notions of

abstraction in formal specifications [5]. We would be disappointed. Anyone experienced in ITP-based formal

methods will know that the actual formation of a formal specification is a translation from informal to formal

specification, and thus features very little by way of mathematical abstraction [6, 10, 11]. For example, the

formal specification of a system’s topology will specify process APIs or communication protocols, but will

almost certainly not formalize any graph theoretic description of the system.

The undone science for which we advocate is a study of how we can unify these notions of abstraction and

specification in order to rigorously evaluate the correctness of software specifications. Software will have as

many errors due to incorrect specification as it will to incorrect code, and while a great deal of work has

been done in formal methods to show software correct with regards to a specification, relatively little has

been done to evaluate the correctness of a specification itself [5, 9, 14]. The example of formally specifying a

system’s topology by specifying APIs or communication protocols shows us a problem that needs addressing:

in practice, mathematical aspects of software design are not specified with mathematics, but instead undergo

an informal translation into a prose specification. We argue that this informal translation is an immense

source of avoidable errors. With ever-growing libraries of formalized mathematics, there is no reason why

formal specifications need to undergo such informal translations, and improving the rigor with which we

specify software will ultimately help us reason about the correctness of software specifications.
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